Haar wavelet-based adaptive finite volume shallow water solver

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Object-oriented Modelling of an Adaptive, Quadtree-based, Finite Volume Method for the Shallow Water Equations

The results of an investigation in developing a generalized toolkit for Quadtree based Finite Volume models, exemplarily applied on the Shallow Water Equations, are given in this report. The developed application model: (i) discretizes a given topography using a quadtreebased grid system and (ii) solves the Shallow Water Equations by a numerical method based on the Finite Volume Method on the a...

متن کامل

A fast finite volume solver for multi-layered shallow water flows with mass exchange

A fast finite volume solver for hydrostatic multi-layered shallow water flows with mass exchange is investigated. In contrast to many models for multi-layered hydrostatic shallow water flows where the immiscible suppression is assumed, the present model allows for mass exchange between the layers. The multi-layered shallow water equations form a system of conservation laws with source terms for...

متن کامل

Adaptive wavelet collocation method on the shallow water model

Article history: Received 20 May 2013 Received in revised form 10 March 2014 Accepted 25 March 2014 Available online 1 April 2014

متن کامل

Adaptive Finite Volume Method for the Shallow Water Equations on Triangular Grids

This paper presents a numerical entropy production (NEP) scheme for two-dimensional shallow water equations on unstructured triangular grids. We implement NEP as the error indicator for adaptive mesh refinement or coarsening in solving the shallow water equations using a finite volumemethod. Numerical simulations show thatNEP is successful to be a refinement/coarsening indicator in the adaptive...

متن کامل

Well-balanced Finite Volume Evolution Galerkin Methods for the 2d Shallow Water Equations on Adaptive Grids

Abstract. We extend a well-balanced finite volume evolution Galerkin (FVEG) method to nonuniform grids. As a model problem, we consider the two-dimensional shallow water equations with a source term modelling the bottom topography. Our work is based on the well-balanced scheme proposed in (Lukáčová, Noelle, Kraft, J.Comp.Physics, 221, 2007). We present selected test cases to demonstrate the cap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Hydroinformatics

سال: 2015

ISSN: 1464-7141,1465-1734

DOI: 10.2166/hydro.2015.039